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ABSTRACT

We examine two methods of applying multiple equality constraints to neural networks influenced by dynamical
systems and differential geometry. The first method can be applied directly to constrain neural network
training and is shown to be equivalent to a particular choice of Lagrange multipliers, enabling use with
standard backpropagation techniques. We evaluate the speed of this method in light of the known theoretical
guarantees and propose a second method which trades guarantees for speed. The second method for
constraining neural networks can be applied to a model post-training and is therefore also completely
independent of the model design and architecture. Experimentally, we evaluate the performance and
computational efficiency of these methods against both unconstrained and soft-constrained baselines on a
simple toy problem which allows for detailed investigation. We primarily investigate the Helmholtz equation
as a linear partial differential equation (PDE) constraint, as many constraints for scientific domains can be
framed as PDEs. We show that while the outputs of the constrained models do sometimes seem qualitatively
better and are less prone than soft-constraints to over-constraining the problem, all methods seem to be
unpromising in practice, despite theoretical guarantees. Finally, we discuss difficulties of implementing these
methods for practical problems and offer suggestions for future improvements.

Keywords: neural networks, constrained optimization, nonlinear optimization, PDE con-
strained optimization, PDEs

INTRODUCTION

Neural networks have shown considerable promise in recent years as a data-driven sample
generation process. For example, Karras et al. (2018) were able to produce high-quality images
of human faces and showed that the generation process even possessed a latent space which
agrees at least partially with human intuition. In light of this success, many groups have turned
to applying neural networks as a generative process for scientific domains, such as modelling fluid
dynamics (Kim et al., 2018; Wiewel et al., 2018), turbulence (King et al., 2018; Mohan et al.,
2019), and airflow (Thuerey et al., 2018). In contrast to naturalistic domains, such as images of
human faces or animals, for scientific domains experts are often aware of many rules underlying
the generative processes. For example, in modelling incompressible fluid flow, we know that
conservation of momentum holds. Scientific laws and conservation and governing equations are
vital to our understanding of such phenomena, but neural networks are presently incapable of
taking advantage of this domain knowledge. This is problematic in primarily two regards. Firstly,
because data-driven neural networks do not know the underlying equations, they require more
data, as they must learn the underlying equations before they can be a truly representative data
generator. Incorporating these equations into the model will hopefully allow for more detailed
and skillful sample generation with smaller datasets. Secondly, models which do not explicitly
respect the known equations are more difficult to trust. For data-driven generative processes
which explicitly conform to given equations, we have greater trust that their predictions conform
to the equations even in regions with few training examples. Thus, building governing equations
into neural networks will hopefully provide us with a powerful data-driven generative process
which is more skillful and trustworthy.

Many scientific laws, conservation equations, and governing equations can be written in the
form of a partial differential equation (PDE). For this reason, in this work we focus on general
methods for constructing neural networks which satisfy to an arbitrary PDE constraint (or set of



PDE constraints). Of course, in the case of multiple PDE constraints, we can only apply fewer
constraints than the number of degrees of freedom of the neural network. However, since the
network is typically over-parameterized by many thousands or millions of trainable weights, we
are unlikely to reach that limit for a typical neural network. Neural networks are surprisingly
well designed for use with PDEs. Because a PDE can be written in a form which takes a function
and outputs a number for how well that function satisfies the PDE and because neural networks
are themselves functions in the form of a computational graph, we can apply any desired PDE
to a neural network as long as we know how to take derivatives. Fortunately, popular neural
network frameworks such as Tensorflow (Abadi et al., 2015) and PyTorch (Paszke et al., 2017)
use automatic differentiation to perform backpropagation on the neural network, so we already
have the tools necessary to compute the derivatives of the neural network’s computational graph
(Baydin et al., 2018). As such, computing the value of a PDE constraint in a modern neural
network framework is as simple as writing the PDE in the framework itself. The wide-ranging
applicability of PDEs combined with the simplicity of calculating PDEs of neural networks
motivates the investigation of PDE constrained neural networks.

There are several methods for constraining neural networks. Two which have previously found
utility are task-redefining and “soft-constraints.” Task-redefining is best described by example.
If you wish to produce samples of fluid flow, then it is typical to have a neural network output
the velocity of the fluid on a discrete grid. In order to ensure that the flow is incompressible
(i.e. divergence free), rather than outputting the velocity of the fluid directly, the curl of the
network outputs can first be computed and this interpreted as the fluid velocity. Since the
divergence of the curl of a vector field is identically zero, this ensures the constraint is satisfied
exactly. This process of rephrasing the problem into a form which exactly satisfies the desired
constraints by design is very powerful, but very difficult to employ. Rephrasing the problem in
such a manner requires extensive domain knowledge and becomes increasingly difficult when
multiple constraints should be satisfied exactly. For these reasons, we do not investigate this
method further in this work.

“Soft-constraints” are the most commonly used method for constraining neural networks. If
a neural network is trying to minimize the loss function f and has constraint functions gi such
that gi = 0 indicates the constraint is satisfied, then the soft-constraint method typically defines
an augmented loss function

L = f + c

M∑
i=1

g2
i

and then uses this augmented loss function for training. Here, c is some penalty coefficient
and the sum of the squares of the constraints could be replaced by any positive semi-definite
regularization term. The primary problem with this method is that it only ensures that the
minimization of the residual of the constraint function, but never that the constraint exactly
reaches zero. There is no guarantee that the fully trained neural network exactly satisfies any of
the constraints and further there is no guarantee that any constraint residual is smaller than a
previously specified value. Despite this, this method is commonly used in practice because it
does provide derivative information for the constraints and is very computationally cheap. For
this reason, we use this as a comparison baseline for evaluating our two proposed methods of
constraining neural networks.

Recent work has also considered the relationships between neural networks and constraints and
also neural networks and PDEs. Márquez-Neila et al. (2017) recently examined hard constraints
through the process of constrained neural network optimization and showed that under their
formulation it was too computationally expensive to be of practical use. Similarly, Zhang and
Constantinides (1992) and Platt and Barr (1988) tackled the idea of having a neural network
predict its own Lagrange multipliers as a method of performing constrained optimization. Long
et al. (2017) and Long et al. (2018) investigated the reverse problem of learning PDE governing
equations from data. Raissi (2018) expanded on the task of learning PDE equations by having a
neural network itself model an arbitrary PDE. Lastly, Chen et al. (2018) investigated building
neural networks which implicitly respect certain PDEs. They note that residual neural network
architecture have remarkable similarities to numerical evaluation and approximation of ODEs.
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The contributions of this work are summarized as follows:

• Motivated by existing dynamical systems designed for constrained optimization, we develop
a method of performing constrained optimization of neural networks under arbitrary PDE
constraints, provide some theoretical guarantees, and perform an experimental analysis of
its complexity.

• Further, in observation of the high computational cost of the constrained optimization
method, we present the more computationally efficient method of nonlinear projection of
the neural network weights, which trades theoretical guarantees for a large speed increase.

• Lastly, we experimentally evaluate these methods on a toy problem and show that, while
both methods seem promising in theory, they do not seem practically feasible or useful.

CONSTRAINED OPTIMIZATION

Neural network training can be viewed as the optimization problem of finding

θ∗ = argmin
θ∈Θ

E
xB

[f(xB ; θ)]

where f is the minimization function, which is usually a loss function applied to the outputs of the
neural network, xB is a minibatch of inputs to the network, Θ is the space of possible parameters
and θ and θ∗ are the current and optimal parameters of the network, respectively. Given this
interpretation of neural network training, we consider the following constrained optimization
problem:

θ∗ = argmin
θ∈Θ

g(θ)=0

E
xB

[f(xB ; θ)] (1)

where g is a (possibly vector-valued) constraint function which is similarly applied to the
parameters of the network. In practice, the function g is often estimated by using the same
minibatch of inputs to the network as that which is used for the minimization function. In
other words, we often use g(θ) ≈ ExB

[g(xB ; θ)]. Estimating the constraints in this manner is
typically very efficient, because the constraints can therefore be computed at the same time as
the value of the minimization function. Especially in the case where the constraint function and
the minimization function can be viewed as functions of the outputs of the neural network, most
of the computational effort can be shared. In this case, the optimization problem becomes:

θ∗ = argmin
θ∈Θ

E
xB

[f(ŷ(xB ; θ))]

s.t. g(ŷ(xB ; θ)) = 0

where ŷ(xB; θ) is the output of the neural network for the minibatch of inputs xB and the
parameters θ. A depiction of the general optimization process is shown in Figures 1.

The constraint function g itself implicitly defines a series of “level surfaces”, which are the
preimages of the values that the constraint function takes. One of these preimages, g−1(0) defines
the constraint manifold for our optimization problem. We observe that, assuming the constraint
function is twice differentiable and the first partial derivatives of the constraint functions are
linearly independent (i.e. the Jacobian of the constraint function is full-rank), then the set
g−1(0) does indeed form a manifold. Figure 2 offers a second depiction of the optimization
problem, this time viewed from the perspective of the constraints instead of the loss function.
For simplicity of illustration, we assume in Figure 2 that the constraint function is a single
real-valued function instead of a set of real-valued functions or, equivalently, a vector-valued
function.

As neural networks are trained iteratively, we can further view the training process itself as a
dynamical system. The topic of constrained optimization as a dynamical system has previously
been discussed in the literature and, in fact, a dynamical system for constrained optimization was
proposed by Tanabe (1980) using the original work of Branin (1972). For the sake of completeness,
we quickly summarize this method and comment on its guarantees. Let f : RN → R : θ 7→ f(θ) be
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Figure 1. An abstract view of how training of a neural network to minimize a loss function f
under the constraint g(θ) = 0 proceeds. During training, the parameters of the network move
along the dashed path, thereby minimizing the minimization function. The orange color fill
indicates how negative the value of the loss function is, as neural network training attempts to
minimize the loss function.
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Figure 2. An abstract view of the constraint manifold and other preimages of the constraint
function for an optimization problem. For simplicity of illustration, the constraint function g is
assumed to be real-valued. In general, it may be vector-valued, in which case the constraint
space will be isomorphic to RM for some M .
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a function to be minimized and similarly let g : RN → RM : θ 7→ g(θ) be a vector of M constraint
functions (M < N) such that g(θ) = 0 indicates all constraints are exactly satisfied. Further,
assume that f and g are twice differentiable and that the Jacobian of the constraint function g
is full-rank on a sufficiently large domain (along the trajectory of the dynamical system). Then
for the constrained optimization problem,

θ∗ = argmin
θ∈Θ∼=RN

f(θ)

s.t. g(θ) = 0

is in the limit set of the dynamical system

θ̇ =
dθ

dt
= Ψ(θ) = −

(
I− J(g(θ))+J(g(θ))

)
J(f(θ))T − J(g(θ))g(θ) (2)

where J(f(θ)) is the Jacobian matrix of the function f at the point θ and A+ is the Moore-Penrose
Pseudoinverse of the matrix A (Penrose, 1955). Here, we view the vectors θ and g(θ) as column
vectors. The requirement that the Jacobian of the constraint function g be full-rank is equivalent
to requiring that linearizations of all constraints be linearly independent at a given point and

implies that J(g(θ))+ can be computed as J(g(θ))+ = J(g(θ))T
(
J(g(θ))J(g(θ))T

)−1
. With

this in mind, we can rewrite the dynamical system (Eq. 2) equivalently as

θ̇(t) =
dθ(t)

dt
= Ψ(θ(t)) = −J(f(θ(t)))T − J(g(θ(t))))TΛ(θ(t)),

where Λ(θ(t)) =
(
J(g(θ(t)))J(g(θ(t)))T

)−1 (−J(g(θ(t)))J(f(θ(t)))T + g(θ(t))
) (3)

Tanabe (1980) showed that, under the assumptions above, and assuming the dynamical
system does not diverge, the dynamical system would ensures g(t) = g(θ(t)) = g(θ(t0)e−t, where
t ∈ [t0,∞) (see the appendix for a proof of this). In other words, starting from the original value
of ‖g(θ(t0))‖, the magnitude of the residual of the vector-valued constraint function would
decay exponentially quickly to 0. Tanabe (1980) did note, however, that the convergence of the
minimization function f to its minimum was generally much slower and is not guaranteed to be
superlinear. Figure 3 describes this process geometrically. The dynamical system is equivalent
to projecting the standard backpropagation vector to the tangent space of the constraint surface
and adding a corrective term which ensures the exponential decay of the constraint residual. For
further reference, Figures 8 and 4 of Tanabe (1980) provide similar descriptions of the dynamical
system and the exponential decay of the constraint function residual, respectively.

While (Eq. 3) describes a valid dynamical system for constrained optimization, it requires
some modifications before it can be used for neural networks. In particular, we need to discretize
this continuous system and modify the minimization and constraint functions f and g for use
with an arbitrary minibatched backpropagation scheme, such as stochastic gradient descent
(SGD; LeCun et al., 2012) or ADAM (Kingma and Ba, 2014). We begin by noticing that (Eq. 3)
is better suited to backpropagation, as the definition of Ψ(θ(t)) can be written equivalently as

Ψ(θ(t)) = −∇f(θ(t))−
M∑
i=1

λi(θ(t)) ∗ ∇gi(θ(t))

where λi(θ(t)) is the ith element of the vector Λ(θ(t)). Written this way, it becomes clearer that
the λi’s are acting as Lagrange multipliers. To discretize this, we apply a simple forward Euler
scheme and recover that, given the learning rate η, the kth iteration of the parameters of the
network θk can be given as

θk = θk−1 + η ∗Ψ(θk−1) = θk−1 − η ∗

(
∇f(θk−1) +

M∑
i=1

λi(θk−1)∇gi(θk−1)

)
Similarly, the standard backpropagation algorithm applied to the function L computes

θk = θk−1 − η ∗ ∇L(θk−1)
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Figure 3. A geometric depiction of the dynamical system of Tanabe (1980). The gradient of the
minimization function (yellow) is projected (purple) to the tangent space of the constraint
function at the current parameter values θ. Additionally, a corrective term (green) ensures that
any deviation from the constraint manifold is dampened exponentially quickly. This results in
the total update vector Ψ(θ) (red).
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Comparing these two equations shows that we can use the Lagrange multipliers λi together with
the minimization and loss functions to obtain an equivalent L which satisfies the desired forward
Euler scheme when the backpropagation algorithm is applied:

L(θk) = f(θk) +

M∑
i=1

nograd(λi(θk)) ∗ gi(θk)

where λi(θk) = Λ(θk)i

Λ(θk) =
(
J(g(θk)) · J(g(θk))T

)−1 (−J(g(θk)) · J(f(θk))T + g(θk)
) (4)

Here, the nograd operation ensures that the Lagrange multipliers are treated as a constant in
terms of θk when backpropagation is performed, as otherwise we would wind up with additional
terms. Equation 4 thus enables a form a constrained backpropagation for the minimization of
the function f parameterized by θ such that the magnitude of the residual of the vector-valued
equality constraint function g, also parameterized by θ, exponentially decays to 0 (under the
assumptions described above).

Finally, to ensure that this method works with neural network training with minibatches,
we need to modify the functions f and g to be minibatched functions as is typical of neural
network training. Ensuring that f is a minibatched function is simple, as the minibatched
backpropagation algorithm already handles the minimization of an expectation of a minibatched
function, ExB

[f(xB ; θk)] by using

L(xB ; θk) = E
xB

[f(xB ; θk)]

directly. However, handling the products λi(θk) ∗ gi(θk) is trickier because it is not immediately
clear how one should go about taking the expectation of this. Here, we propose two slightly
different versions which have slightly different interpretations. For the more direct version, which
we will refer to as the fully constrained version, we compute ExB

[λi(xB ; θk) ∗ gi(xB ; θk)]. In
other words, we are computing the expected value of the reweighted sum of the individual
constraint functions. Geometrically, this is equivalent to computing the average tangent plane to
the function g(θk) in Θ-space and using that as the effective tangent plane for constraining the
minimization function. Using this version yields a minibatch backpropagation scheme of

L(xB ; θk) = E
xB

[
f(xB ; θk) +

M∑
i=1

nograd(λi(xB ; θk)) ∗ gi(xB ; θk)

]

=
1

B

B∑
i=1

f(xi; θk) +

M∑
j=1

nograd(λj(xi; θk)) ∗ gj(xi; θk)

where λj(xi; θk) = Λ(xi; θk)j

Λ(xi; θk) =
(
J(g(xi; θk)) · J(g(xi; θk))T

)−1 (−J(g(xi; θk)) · J(f(xi; θk))T + g(xi; θk)
)

(5)

where we are interpreting the minibatch xB as {xi : 1 ≤ i ≤ B} and considering the functions
f and g as unbatched. In practice, this can be done by performing a batched forward pass on
both f and g, computing the Lagrange multipliers Λ(xi; θk) similarly using a batched function,
computing L batched, and then taking the mean along the batch direction. We will describe
how to compute the Lagrange multipliers below.

Alternatively, rather than taking the expected value of the reweighted sum of the constraint
functions, we could first compute the expectation of the function g and then compute the (single
set of) Lagrange multipliers for the resulting expectation. In other words, if for shorthand we
define g̃(xB ; θk) := Reducexi∈xB

(g(xi; θk)) to be some batch-wise reduction of the function g, such
as the mean squared error, we could alternatively compute the products λ̃i(xB ; θk) ∗ g̃i(xB ; θk),
where the multipliers Λ̃(xB; θk) are computed using g̃ instead of g. Choosing the batch-wise
reduction must be done with care, as we need to ensure that the zero values of the functions g
and g̃. In particular, we cannot simply take the mean of the function g, as that could result in
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spurious zero values. For instance, if the constraint function takes value +1 for half of the batch
and −1 for half of the batch, then the mean value is 0, even though none of the constraints
are actually satisfied. For this reason, we recommend using a standard error function, such
as mean squared error, as the mean squared error is only zero if every single term is the sum
is also zero. As this version hinges on the use of some batch-wise reduction function (labeled
Reducexi∈xB

below), we refer to this version as the reduction version. The resulting minibatch
backpropagation scheme is

L(xB ; θk) = f̄(xB ; θk) +

M∑
j=1

nograd
(
λ̃j(xB ; θk)

)
∗ g̃j(xB ; θk)

=
1

B

B∑
i=1

f(xi; θk) +

M∑
j=1

nograd
(
λ̃j(xB ; θk)

)
∗ g̃j(xB ; θk)

where λ̃j(xB ; θk) = Λ̃(xB ; θk)j

Λ̃(xB ; θk) =
(
J(g̃(xB ; θk)) · J(g̃(xB ; θk))T

)−1 (−J(g̃(xB ; θk)) · J(f̄(xB ; θk))T + g̃(xB ; θk)
)

f̄(xB ; θk) = E
xB

[f(xB ; θk)] =
1

B

B∑
i=1

f(xi; θk)

g̃(xB ; θk) = Reducexi∈xB
(g(xB ; θk)) = e.g.

B∑
i=1

M∑
j=1

(gj(xi; θk))
2

(6)

Notice that this second version is completely identical to the unbatched version by using the
functions f̄(xB ; θk) and g̃(xB ; θk) as approximations of the minimization and constraint functions.

Before we provide a quick analysis of the theoretical complexity of the two versions of this
method, we first wish to comment on the method for computing Λ(xi; θk). Rather than forming
the inverse matrix of the product of the Jacobian J(g(xi; θk)) (or J(g̃(xi; θk))) and its transpose,
we recommend solving the equation directly:(

J(g(xi; θk)) · J(g(xi; θk))T
)
· Λ(xi; θk) = −J(g(xi; θk)) · J(f(xi; θk))T + g(xi; θk)

In particular, we recommend using an iterative method such as Conjugate Gradient (Straeter,
1971), since Λ(xi; θk−1) is likely a good estimate for Λ(xi; θk). However, observing that the size
of the matrix in this matrix-vector equation is M ×M and that M � B and M � N (N the
number of trainable parameters of the network), this final step in computing Λ(xi; θk) does not
contribute strongly to the overall complexity and therefore the precise method of computing the
multipliers is not very significant.

In our analysis of the asymptotic complexity of this method, we will use N to denote the
number of trainable parameters in the network, B for the batch size, and M for the number
of (scalar-valued) constraint functions. Similarly, we let BP (N) denote the complexity of
backpropagation, G(N,M,B) denote the complexity of computing the constraint function values,
and F (N,B) denote the complexity of a normal forward pass on the network with N trainable
parameters and batchsize B. In general, these may also depend on the architecture of the neural
network. For the fully constrained version, FC(N,M,B), we have

FC(N,M,B) ∈ O(BP (N)︸ ︷︷ ︸
backpropagation of

single valued L(xB ;θk)

+F (N,B) +G(N,M,B) +

batched computation of multipliers︷ ︸︸ ︷
B ∗ (M3︸︷︷︸

upper bound for solving
matrix-vector equation

+

J(g)·J(g)T︷ ︸︸ ︷
M2 ∗N +M ∗N︸ ︷︷ ︸

J(g)·J(f)T

+

sum on RHS︷︸︸︷
M ))

∈ O
(
BP (N) + F (N,B) +G(N,M,B) +B ∗M3 +B ∗M2 ∗N

)
∈ O

(
BP (N) + F (N,B) +G(N,M,B) +B ∗M2 ∗N

)
(7)
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where in the last line we used the assumption that M � N , which holds for any practical
application. Similarly, if we define F̄ (N,B) as the complexity of computing f̄ and G̃(N,M,B)
as the complexity of computing g̃, for the reduction version Red(N,M,B) we have

Red(N,M,B) ∈ O(BP (N)︸ ︷︷ ︸
backpropagation of

single valued L(xB ;θk)

+F̄ (N,B) + G̃(N,M,B) +

computation of multipliers︷ ︸︸ ︷
M3︸︷︷︸

upper bound for solving
matrix-vector equation

+

J(g̃)·J(g̃)T︷ ︸︸ ︷
M2 ∗N +M ∗N︸ ︷︷ ︸

J(g̃)·J(f̄)T

+

sum on RHS︷︸︸︷
M )

∈ O
(
BP (N) + F̄ (N,B) + G̃(N,M,B) +M3 +M2 ∗N

)
∈ O

(
BP (N) + F̄ (N,B) + G̃(N,M,B) +M2 ∗N

)
(8)

From this, we can see that, as the complexity of using soft-constraints is approximately

O (BP (N) + F (N,B) +G(N,M,B)) ≈ O
(
BP (N) + F̄ (N,B) + G̃(N,M,B)

)
, the cost of this

method adds only the final term in both (Eq. 7) and (Eq. 8). Further, we notice that the
reduction version is more computationally efficient by a factor of the batch size, which was
exactly the motivation of defining and using the batch-wise reduction. However, as both versions
scale with the number of trainable parameters of the network, even from a theoretical perspective
we have reason to worry that the complexity of this method is prohibitive for all but the smallest
of networks. Despite this, since this method come with the guarantee that the magnitude of the
residual of the constraints will decay exponentially quickly, assuming that the training process
does not diverge, it may be worth the computational cost for certain problems.

NONLINEAR PROJECTION

While both versions of the above method operate within the framework of training the neural
network as a constrained optimization task, there is another option available which may not suffer
from the high computational complexity of constrained neural network optimization. Namely, we
can train a neural network in the normal, unconstrained fashion using a standard minimization
function and then, once we have finished training the network completely, we can clone the
model and the train the clone using just the constraint function and a set of data specifically for
constraining (similar to validation data). The idea here relies on the following observation: for
any vector of neural network parameters θk at timestep k, there exists a nearest vector θ+ in
parameter space (Θ) which satisfies the constraint function. In other words, we define

θ+ = argmin
θ∈Θ

g(θ)=0

‖θk − θ‖

Geometrically, this projection of the trainable parameters of the network to the implicit constraint
surface is related to the constrained optimization methods as shown in Figure 4. While the
constrained optimization technique takes the “direct” path through parameter space to the
optimal parameters which satisfy the constraints, the nonlinear projection method breaks the
problem into two steps which together yield a similar result.

There are some distinct advantages to this method over the constrained optimization. First,
since for the first stage we are only dealing with unconstrained problem, we can simply train the
model in any way we like before applying this method. In other words, we can apply this method
to a fully trained model. Further, since during the second stage we are only worrying about
the constraint function, if we define a batch-wise reduction of g in exactly the same way as the
reduction version of constrained optimization, for the second stage we also have a scalar-valued
(positive semi-definite) minimization function, so we can “project” the model exactly like during
training by simply swapping out the minimization function. Additionally, we note that the
constraint manifold as embedded in RN ∼= Θ may be very contorted. If this is the case, then the
Euclidean distance between θ and θ∗, which is used when training a neural network normally,
may be much less than the distance along the constraint surface, as illustrated in Figure 5. As a
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Figure 4. Comparison of the constrained optimization training method and the nonlinear
projection method. While the constrained optimization method (purple) takes a more direct
path to the optimal parameters θ∗, nonlinear projection (blue) can be applied to an already
trained model at iteration k with parameters θk. This allows for any desired method for the
initial training of an unconstrained model (red). The final parameters θ+ resulting from the
nonlinear projection may not be the most optimal parameters. The orange color fill indicates
how negative the value of the loss function is, as neural network training attempts to minimize
the loss function.
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Figure 5. Comparison of the Euclidean distance and distance along the constraint surface of the
current parameters of the network θ and the optimal parameters θ∗ in the case where the
constraint manifold is highly contorted. Colors as in Figure 4.

consequence, training normally could require fewer iterations than the constrained optimization
method, even though the constrained optimization method is more effective with the steps it
takes. This observation, in combination with the observation that the overall complexity of
normal training followed by nonlinear projection does not have the extra M2 ∗N term, suggests
this will likely scale better to larger networks.

The main disadvantage to this method compared to the previous method is that we have no
convergence guarantees beyond that of normal neural network backpropagation. In particular,
when we are projecting the model during the second stage of training, we may move far away
from the minimum of the original minimization function (θ∗). In other words, while we will find
the closest point in parameter space to the minimum of the original minimization function which
satisfies the constraint function (θ+), that does not mean that our final point is a minimum
of the constrained optimization problem (θ+ 6= θ∗). Another disadvantage of this technique is
that the learning rate for the first stage of training is not necessarily the same as the learning
rate during the second stage of projection. This possibly requires an additional hyperparameter
search for the model, which could slow the overall training process. Despite this, since each stage
of the training process is only as expensive as the normal method for training a neural network,
this is a much more computationally feasible method.

Interestingly, this technique of nonlinearly projecting the weights of the network through
gradient descent has a dual interpretation. Since we are only modifying a clone of the model
and not the original trained model, this process can be repeated independently for different
constraint functions and different data for constraining. As such, this method can be viewed as
asking hypothetical questions of a trained model, where the question itself is phrased in terms of
a constraint function with accompanying data. This leads to an interesting distinction between
this method of producing a constrained model and the method of constrained optimization.
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For a given model architecture and initial parameter values, constrained optimization produces
the nearest parameter values which minimize the minimization function and the error of the
constraint function at the observed training data. On the other hand, for a given model
architecture and final parameter values, nonlinear projection produces the nearest parameter
values which minimize the error of the constraint function on the provided data for constraining.
While the first answers the question: “What is the solution given these constraints?”, the second
answers the question: “Given the previous learned domain knowledge from the training data
and this constraint function and data as counterfactual evidence, what is the best solution?” As
such, we suggest that the method of nonlinearly projecting the network parameters post-training
offers an interesting interpretability technique, but we do not consider this idea further here,
leaving that to possible future work.

To summarize the constrained optimization training method and the nonlinear projection
method in terms of the functions which they minimize during backpropagation (their effective
loss functions), we see that the fully constrained version of constrained optimization minimizes

L(xB ; θk) = E
xB

[
f(xB ; θk) +

M∑
i=1

nograd(λi(θk)) ∗ gi(θk)

]
(9)

the reduction version minimizes

L(xB ; θk) = E
xB

[f(xB ; θk)] +

M∑
j=1

nograd
(
λ̃j(xB ; θk)

)
∗ g̃j(xB ; θk) (10)

and the nonlinear projection method minimizes

L1(xB ; θk) = E
xB

[f(xB ; θk)] (11)

and

L2(xB ; θk) =

M∑
j=1

µj(xB ; θk) ∗ g̃j(xB ; θk) (12)

during the training (L1) and projecting (L2) stages, with µj weights for each of the component
constraint functions which are selected or defined beforehand and all other variables as defined
in the above section. In particular, we note that, if we select µj = λ̃j and use the same data for
the projection stage as the training stage, then the reduction version of constrained optimization
is very similar to the nonlinear projection, except that the training and projection stages are
interwoven within each batched parameter update.

METHODOLOGY

Constrained Optimization
To test and compare the different constraining methods, we investigated a simple toy problem:
whether a relatively small neural network could learn to represent an arbitrary 1-D sine wave
under the loss of mean squared error with the Helmholtz equation as a PDE constraint. The
Helmholtz equation written in standard form is

∇2
xu(x) + k2u(x) = 0

where u is a 1-D function being constrained, k is the frequency of the ground truth sine wave,
and ∇2

xu(x) is the second derivative of u(x). Here, we compare the two different constrained
optimization methods against two baselines: an unconstrained model and a soft-constrained
model. For the reduction version, we take the mean of the Huber error of the constraint along
the batch (Huber, 1992). For the soft-constrained model, we use a weighting of λ = 1/B, where
B is the batch size of 100. The learning rate was held constant at 0.001 for all methods. The
architecture of the network was also constant and is shown in Figure 6. This architecture was
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Figure 6. Architecture for the neural network used in all main experiments. Each blue box
corresponds to a dense layer followed by only a Swish activation. Each green box corresponds to
a dense layer with linear activation. The � operations indicate element-wise multiplication
(scaling).

inspired by both Karras et al. (2018) and Ha et al. (2016), as it functions both as a “style-transfer”
network which transfers the style of each individual sine wave to the network outputs and also
as a network parameterized by another network through the upper row of affine transformations.
Importantly, rather than use ReLU as the activation function, which has a second derivative of 0
everywhere, we use the Swish function proposed by Ramachandran et al. (2017), which has a
symmetric, non-zero second derivative.

The training data consists of 1000 different sine waves with 50 x-values sampled uniformly in
[−1, 1] for each wave. The sine waves are formed with

f(x;A, k, φ) = A ∗ sin(k ∗ x+ φ)

where A, k, φ can each take 10 possible values equally spaced across the intervals [0.2, 5.0],
[0.4 ∗ π, 10 ∗ π], and [−0.5, 0.5] (including the endpoints). The testing data is a single sine
wave with A = 1.0, k = 1.0, and φ = 0.0 and 500 x-values equally spaced across the interval
[−1, 1] (including the endpoints). The model is provided with the tuple (x,A, k, φ) as input and
should output f(x;A, k, φ). All methods other than the fully constrained version of constrained
optimization were trained 40 epochs. The fully constrained version was only trained for long
enough to get statistics on the amount of time required for a single iteration, as training the
model under this method was nearly computationally infeasible.

Nonlinear Projection
We tested the post-training projection method on the same toy problem as the constrained
optimization experiment. Here, we trained the same architecture (Figure 6) with the same
learning rate of 0.001 and the same loss of mean squared error. The training data also consisted
of the same 1000 sine waves, but for this experiment we sampled 500 x-values uniformly in [−1, 1]
for each wave. The data used for projecting the model after training was the same as the testing
data from above, except we only drew 100 x-values equally spaced across the interval [−1, 1]
(including the endpoints). For training, since we increased the amount of data by a factor of
10, we also increase the batch size to 1000. For projection, we used a different batch size and
learning rate than during training. We found a batch size of 50 and a learning rate of 10−4 to
work well.

The training and projection process was as follows: during each training epoch, the model
was trained as normal. After each epoch, a clone was made and the clone was projected until the
mean squared error of the Helmholtz constraint was less than 10−3. On average, this was around
6000 projection iterations. Training on the original model was then resumed. In this way, the
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Figure 7. Dependence of training time on batch size for different constrained optimization
techniques. Solid lines show the mean time required for the method and the fill shows the 95%
confidence interval over 100 runs. Inset shows all methods except the most expensive to better
enable comparison. Here, the number of trainable parameters is approximately 600 and the
number of constraint functions is 1.

original model was never influenced by information about the constraint. After the final epoch,
we similarly clone the model and project the clone so that we have an unprojected and projected
version of the final model. For this experiment, the model was allowed to train for 20 epochs.

RESULTS AND DISCUSSION

Constrained Optimization
Figures 7-9 show the impact of different training methods on the time required to perform a
single update iteration. Figure 7 depicts the dependence on the batch size, Figure 8 depicts the
dependence on the size of the model, and Figure 9 depicts the dependence on the number of
constraint functions. All plots show that there is no statistical difference between the training
time for the soft-constrained and unconstrained baselines (see inset of all three plots). This is
to be expected, as the only additional cost that the soft-constrained baseline requires over the
unconstrained baseline is the computation of the residual of the constraints. For most problems
and neural network architectures, the cost of backpropagation already greatly exceeds that of
a forward pass, so the cost of computing the constraint residual alone (which is typically not
more expensive than a second forward pass) is minimal. By comparison, we can see that the
cost of the fully constrained method for a single constraint is orders of magnitude larger than
the baselines and the cost of the reduction version for a single constraint is approximately twice
that of the baselines.

Training time for both proposed constraining methods scales linearly with both the model
size and the number of constraints. Given the asymptotic analysis above, this is expected for
model size, but not for the number of constraints. However, we suspect that the complexity of
the forward pass for computing the constraints has a much larger coefficient than 1002, and so
even for 100 constraints, it is still the dominant term. Training time for the reduction version also
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Figure 8. As in Figure 7, but for the dependence of training time on model size. Here, the
batch size is 100 and the number of constraints functions is 1.

scales linearly with batch size, whereas training time for the fully constrained version appears
to scale quadratically. This shows the key advantage of the reduction version over the fully
constrained version: since the reduction is performed along the batch axis, the complexity of
the reduction version with regards to the batch size should scale similarly to that of the two
baselines. This is confirmed by the inset of Figure 7. As indicated by all plots, the complexity of
the fully constrained version of constrained optimization is simply far too high to be useful for
any practical problem, so for the remaining experiment on constrained optimization, we have
excluded this version. In fact, this complexity is so high that we conclude here that the fully
constrained version is not a promising tool for constraining neural networks.

Figure 10 shows the data loss and magnitude of the constraint residual for the reduction
version of constrained optimization and both baselines on the toy sine wave with Helmholtz
constraint problem. Figure 11 similarly shows the predictions of these methods on a held-out
test case. Examining the reduction method and the unconstrained baseline, we see that both
methods have surprisingly large constraint residual magnitudes, especially considering that the
predictions of both methods appear to be fairly close to the ground truth. It seems unlikely that
that the predictions could be as close as they are to the desired curves and as smooth as they are
while the second derivative of the model is possibly as high as 103. This apparent discrepancy we
explain by considering what the architecture of neural networks implies about their derivatives.
Most neural network architectures (including those tested here) consist of a large number of
neurons whose output y in terms of the inputs x is given by

y = h(

N∑
i=1

wi ∗ xi)

where w is the learned weights of the neuron and h is a nonlinear function. When a large number
of these are applied in sequence (i.e. when the network is several layers deep), then it is very
likely that the later neurons in the network produce a weighted sum of their inputs which largely
cancels out. As such, the derivative across the neuron for each of its inputs can be very large,
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Figure 9. As in Figure 7, but for the dependence of training time on number of constraint
functions. Here, the batch size is 100 and the number of trainable parameters is approximately
600.

even though the output of the neuron itself remains fairly small across a wide range of different
input values. We believe that this is the source of the discrepancy: the predictions of the models
are deceptively smooth on the scales required for plotting, even though in reality the derivatives
at each individual point are quite large.

Given the discrepancy noted above, one might question whether it even makes sense to
try and constrain the derivatives of the network directly. In fact, we suggest that it does not.
Little is known about the properties of the neural networks as representations of function and
whether they even form a complete basis for all L2 functions. In any case, the very large second
derivatives for both the reduction method and the unconstrained baseline suggest that it is very
difficult to produce a neural network which produces the correct output and also produces the
correct derivatives.

Actually comparing the reduction version of constrained optimization with the unconstrained
baseline, we see that the constrained optimization does not seem to be helping with regards to
either the data loss or the constraint magnitude. In fact, the median value of the magnitude
of the constraint residual for the reduction method is nearly 5 times that of the unconstrained
case. However, we caution that these results are for a single run and therefore it is possible that
the difference is not actually significant. In any case, these results are not promising for the
reduction version of constrained optimization, as while it is possible that it did not hurt the test
performance it is unlikely that it helped. Considering the additional computational cost of the
reduction method over the baselines, we conclude that, similar to the fully constrained version,
the reduction version of constrained optimization is not a promising technique for constraining
neural networks.

As a side note, from Figure 11 it appears that the soft-constrained method has failed to
train. In actuality, the soft-constrained method was simply too strongly penalized and has
found a solution which does minimize the constraints fairly well, namely always outputting 0.
For a complete analysis, this would be an unfair comparison. However, since we have already
determined that the constrained optimization method is not of practical utility, we have not
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Figure 10. Data loss and magnitude of the constraint residual for three models. For the
constraint residual, the distribution across all individual data points across the epoch is plotted.
The dashed lines indicates the minimum and maximum values and the shading indicates how
close the percentiles across the distribution are to the median.
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Figure 11. Predictions for the same models as in Figure 10 on testing data. The black dotted
and dashed line is the ground truth.

performed a complete hyperparameter search for a better constraint weight. Instead, we offer
this model’s predictions as further support for our claims above regarding the difficulty of
constraining a network’s derivatives directly. Even though the model outputs 0 everywhere, the
second derivative of the network, according to Figure 10, has magnitude of approximately 0.08
everywhere. This shows that, even for a very simple case, the inner dynamics of the network
defy our expectations.

Nonlinear Projection
Figures 12 shows the data loss and magnitude of the residual of the constraint before and after
the model parameters are projected to near the constraint surface, as evaluated on the data used
for projection. As the projection process was run until the constraint error was less than 10−3,
the “Projected” line in the constraint error plot lies almost exactly at the value 10−3 across all
epochs, regardless of the original constraint error. While the projection process is able to reduce
the constraint error by approximately 4 orders of magnitude, it does so at severe cost to the
data loss. Although the model has reached a loss of only 10−3 by the 20th epoch before being
projected, after projection, the model has at best an average loss of 0.18, which is no better than
the unprojected model the second epoch of training. Considering that the projection process
does not take into account the loss function of the model, this suggests that the projection
process is likely undoing most of the effort of training in the first place.

Figures 13 and 14 show the unprojected and projected predictions for the model at each
epoch and the predictions of the fully trained model during the projection process, respectively.
These provide a much more detailed view into the projection technique and its effects on the
model. Examining the unprojected predictions of the model during training, we see that the
model quickly learns to predict something which approximates a sine wave, rapidly corrects the
phase of the sine wave, and incrementally corrects the amplitude of the sine wave. The dashed
purple line in Figure 13 shows that the model has approximated a sine wave even by the end
of the first epoch, the dashed indigo line shows that the model has corrected the phase of the
sine wave by the end of the third epoch, and the dashed orange and red lines show the model
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Figure 12. Data loss and magnitude of the constraint residual for the model before and after
projection on test data.
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Figure 13. Predictions of the model before and after projection at various epochs. Each color,
ranging from purple for epoch 1 to red for epoch 20, shows the predictions of the model before
projecting and after projecting at that epoch. The solid black line shows the ground truth.

has quite nearly approximated the entire sine wave correctly by the end of the first 20 epochs of
training.

Interestingly, the projected model predictions do not show all of the same trends as the
unprojected model predictions. While all projected curves are clearly sine waves, the amplitudes
are wildly incorrect. To first order, it appears as though the projection process has managed to
correct the tiny imperfections in the model predictions by squishing the sine wave by a factor
of 2. At the same time, the phase of the projected sine wave “wanders.” To some extend, this
is expected, as the constraint only contains information about the frequency of the sine wave,
not the amplitude or the phase. Despite this, intuition suggests that the projection process
would only need to make small corrections to the model, since the deviation from the nearest
valid sine wave in Euclidean space is very small. Looking closely at Figure 14, we can see how
the projection process incrementally affects the model predictions. As indicated by the very
light grey lines, the model initially is projected by a significant amount away from its previous
predictions and the ground truth, but at some point, the projections distance decreases and
eventually converges to some sine wave. Exactly why the projection has chosen this sine wave
in particular is unclear, but likely is influenced by both the model architecture and the precise
values of the model parameters.

Based on the constrained optimization experiment results, we suggest that possibly the task of
learning to exactly match the desired sine wave while satisfying the second derivative constraints
is likely surprisingly difficult for the model. Figures 13 and 14 provides some insight into why
this might be the case. It seems that the backpropagation update from the constraint function is
pointing the model in a completely different direction than the update from the loss function.
In other words, the level surfaces of the constraint and loss functions in parameter space are
very different and therefore the resulting “landscapes” are also dissimilar. Taking in particular
the magnitude of the model outputs, we see that while the loss function is pushing the model
to increase the amplitude, the constraint function is encouraging the model to decrease the
amplitude, even though the amplitude of a sine wave is completely independent of its frequency.
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Figure 14. Predictions of the fully trained model during the projection process. The colored
dashed line shows predictions before projection and the colored solid line shows predictions after
projection is complete. The dashed grey lines show the predictions after each individual epoch
of projection. The darker the grey line, the less the model predictions changed during that
projection epoch. The solid black line shows the ground truth.
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Our interpretation is that the architecture of the model itself is causing entanglement between
the magnitude of its output and the magnitude of the second derivative of its output, which
makes the task of producing the correct outputs and the correct second derivatives challenging.

CONCLUSION

The results from the constrained optimization toy experiments are particularly disappointing.
While theoretically, it can be seen that the both versions of constrained optimization should
yield a model whose deviation from the constraint manifold decays exponentially quickly with
training time, in practice the complexity of the method makes it prohibitive for even the smallest
problems. The reduction version, which trades out the actual desired constraint for the average
magnitude of the residual of the constraint, is sufficiently fast enough to be used for small
problems, yet still seems to be ineffective in practice.

The nonlinear projection method holds more promise than constrained optimization. It is the
authors’ belief that there likely exists a way of modifying the projection process to better respect
the loss function of the model. The simplest method of doing this would be to perform projection
with an augmented constraint function, much in the way that soft-constraining a model augments
the standard loss function. We caution that doing this may impact the terminating condition
of the projection method. Alternatively, the theory behind the constrained optimization of
a neural network suggests that it may be possible to switch the roles of the constraint and
loss functions and run the projection method with a sort of “reverse constrained optimization”
technique. Of course, since the fully constrained version of constrained optimization is completely
computationally infeasible, we recommend using the reduction trick. In the case of the “reverse
constrained” projection, since we are simply trying to not increase the value of the loss function,
the reduction version should be sufficient.

In light of the observed discrepancy between the smooth predictions of the model (at least,
as determined by the human eye from plots) and the rather large magnitude of the constraint
residual, we suggest that directly constraining the derivatives of the network, as would näıvely
be done for any PDE constraint, is inadvisable. For even a simple toy problem, such as learning
single sine functions, it appears to be very difficult to learn network weights which ensure accurate
outputs and accurate derivatives, as it seems that the architecture of the model itself entangles
the magnitude of the model outputs to its own second derivative. Future work might consider
whether modifying the problem could make it more tractable. For instance, if, rather than
approximating a desired function directly, the network instead represents a desired function by
predicting coefficients for a Fourier basis, then a PDE constraint can be applied directly to those
coefficients without restricting the derivatives of the neural network itself. This method has the
additional advantages of ensuring completeness, as the Fourier basis is known to be a complete
basis for all L2 functions, and being more computationally efficient, as derivatives in spectral
space can be computed very quickly (Canuto et al., 2006).
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PROOF OF EXPONENTIAL DECAY OF THE CONSTRAINT RESIDUAL

Theorem. The method presented in Tanabe (1980) ensures exponential convergence of the
constraint residual to 0.

Proof. To provide greater enlightenment, we prove this starting from the desired result and work
backwards. If the constraint function decays exponentially, then it is of the form

g(t) = g(θ0)e−t

This corresponds to the differential equation

ġ(θ(t)) = −g(θ(t))

⇐⇒

J(g(θ(t)))
dθ(t)

dt
= J(g(θ(t)))θ̇(t) = −g(θ(t))

where in the last line, we used the chain rule to break up the left-hand side into terms which
include θ̇(t). Notice that this implicitly provides a condition that θ̇(t) needs to satisfy. For the
remainder of this proof, we will denote θ(t) by θ and simply keep in mind that θ is a function of
time.

Under the assumption that J(g(θ)) is full-rank, then its pseudoinverse is also full-rank.Therefore,
multiplying both sides by J(g(θ))+ yields an equivalent condition:(

J(g(θ))+J(g(θ))
)
θ̇ = −J(g(θ))+g(θ(t))

Since J(g(θ))+J(g(θ)) is an orthogonal projection operator, for any vector v we know that

v =
(
J(g(θ))+J(g(θ))

)
v +

(
I − J(g(θ))+J(g(θ))

)
v

In particular, for θ̇ we have

θ̇ =
(
J(g(θ))+J(g(θ))

)
θ̇ +

(
I − J(g(θ))+J(g(θ))

)
θ̇

= −J(g(θ))+g(θ(t)) +
(
I − J(g(θ))+J(g(θ))

)
θ̇

Lastly, we note that since (I − J(g(θ))+J(g(θ))) is also an orthogonal projection operator, θ̇
consists of the sum of two perpendicular terms and therefore we can simply choose whatever
desired function h(t) for θ̇ in the right summand and it will not affect the exponential decay. In
other words, we see that

θ̇ = −J(g(θ))+g(θ) +
(
I − J(g(θ))+J(g(θ))

)
h(t)

=⇒
g(t) = g(θ0)e−t

for any choice of h(t). Since for normal backpropagation we take θ̇ = h(t) = −∇f(θ) =
−J(f(θ))T , we do the same here and obtain

θ̇ = Ψ(θ) = −
(
I − J(g(θ))+J(g(θ))

)
J(f(θ))T − J(g(θ))+g(θ)

=⇒
g(t) = g(θ0)e−t
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