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Motivation

e Neural Networks are really powerful

data generators
o e.g. faces, cats, dogs

e Can be used to generate scientific

data wAY y SR ik

o e.g. weather forecasts, model fluids i VR )‘?’\ ' “
e Currently don’t know or respect . 4 =

physical laws ; :; -

o e.g. Conservation of energy, g =

conservation of momentum, etc.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. arXiv
preprint arXiv:1812.04948, 2018.




Neural Network Neural Network
as Data Generator as Dynamical System

Neural Networks .

e Can model arbitrary functions
Ty

e Parameterized by weights, &

e Trained by use of a loss
function, f

e Uses “truth” data and
backpropagation to update
weights
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Partial Differential Equations and Neural Networks

e Most physical laws/relationships can be written as a PDE

e Neural networks themselves model functions

e Therefore, we can apply a PDE to a neural network as long as we can take
derivatives

e Auto-differentiation does just that!
o ldea: define a derivative for all simple operations. Derivatives for complex operations can be

defined inductively using the chain rule
. OPyTorch

S atascience.co
magic 2686 d94 c95



https://towardsdatascience.com/pytorch-autograd-understanding-the-heart-of-pytorchs-magic-2686cd94ec95
https://towardsdatascience.com/pytorch-autograd-understanding-the-heart-of-pytorchs-magic-2686cd94ec95

Methods for Constraining Neural Networks

1. Domain Specific
a. e.g. If you want your model’'s outputs to have zero divergence, take the curl

2. Soft-Constraints / Regularization
a. Simply add some extra terms to your loss function to handle constraint
b. Pro: very computationally cheap (a couple extra additions)
c. Con: doesn’t guarantee the constraints are satisfied
3. Constrained Optimization
a. Modify neural network training to be a constrained optimization problem

4. Nonlinear projection

a. Take the parameters of the network and “project” them to the nearest point which satisfies a
constraint
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Constrained Optimization




Neural Network Training as an Optimization Problem

Typical neural network training is a minimization problem:

6* = argmin E [f(xp;0)]
fc® TB
is the space of possible parameters, @
is the optimal parameters of the neural network
is a batch of inputs to the network
is the minimization (loss) function, which can be phrased as a function of
the input batch and the current network parameters

indicates that we take the expectation over the batches of inputs
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NN Training as a Constrained Optimization Problem

e \We can upgrade the optimization problem to a constrained one by adding

6* = argmin E [f(zp;0)]
bc® TB
g(0)=0

e g is an equality constraint function which is satisfied when
g(60)=0

e The constraint function implicitly defines a manifold of valid parameters™:

Constraint manifold: § . (O)

* Under the assumption that g is twice differentiable and its Jacobian is full-rank everywhere ”\m



Optimization Problem

Geometrically, NN
training is a process
which moves us along
the dashed line
Orange color fill here
indicates how negative
the minimization
function is

...........
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Constraint Manifold g gace RN Constraint Space = R

e A second view of the
optimization problem, this
time from the viewpoint of
the constraints

e For clarity in illustration,
we assume the constraint
function is real-valued

e Lightness roughly
corresponds to optimality
of minimization function




Constrained Training

e Normal training moves
along red curve

e Constrained training
moves along purple
curve

............




Tanabe’s Method

e Define the dynamical system:

0= T = W) =~ (1 J(g(0)*T(a(9)) J(F(0))" ~ J(g(0))g(0)

e J(f(8)) s the Jacobian of the function f at the point @
° AF is the Moore-Penrose Pseudoinverse of the matrix A

e If g is twice differentiable and g's first derivatives are linearly independent at
@ (i.e. full-rank Jacobian), then 9(9) will decay exponentially quickly




Proof of Tanabe’s Method
g(t) =g(6p)e™"

(J(Q(Q))+J(g(9))) = —J(g(@))+g(9(t)) I Assumption

I The Jacobian (and therefore the pseudoinverse) needs to be full rank e



Proof of Tanabe’s Method

e True for any vector (under our assumptions):
v=(J(g(0))"J(g(0))) v+ (I - J(g(0))"I(g(F))) v

e In particular,




Proof of Tanabe’s Method

0=—J(g(0)Tg0t) + (I —J(g(8)"JI(g(6)))h(0)




Geometry of Tanabe’s Method
©-Space

Is the normal
backpropagation vector
Purple is the projection
down to the tangent plane
of the constraint surface
Green is a correction term
Red is the Tanabe’s result




Implementing Tanabe’s Method in Practice

e Tanabe’s Method can also be written as

) = 00 — w(o() = ~I(FOW))T ~ J(g(0(0))"AG(D).

where A(8(1)) = (J(g(8(t))T(g(01)))T) ™ (~I(g(8(1)))J(F(B(t))T + g(6()))

e Equivalently, using a slightly different notation with \;(8(¢)) for the

components of A(6(t))
M

V(O(1) =~V f(6(t)) — Y Xi(6(t)) * Vgi(6(t))

i=1




Discretizing Tanabe’s Method

e \While Tanabe’s Method is continuous, we need a discrete version. Applying a

simple forward Euler method to
M

T(9(t) = —VF(O(1) — D _ X(B(t)) * Vai(6(t))

=1

gives

M
Or =0k—1+nxV(Op_1) =01 —n* (Vf(Qk—ﬂ - Z /\i(9k—1)ng'(9k—1))

=1




Tanabe’s Method and Backpropagation

e Normal backpropagation on the loss function £ gives
Oy = Op_1—8)% VL Oa)

e Comparing this to our forward Euler discretization

M
O =0k—1+nxV(Op_1) =0k—1 —m* (Vf(Ok—ﬂ - Z /\i(9k—1)vgi(9k—1)>

=1

tells us we need

M
L(Or) = f(Or) + Znograd(Az-(Hk)) * i (O)




Implementing Tanabe’s Method in Practice

e Result: We can simply define a new loss function to do constrained
optimization!

L(0r) = f(6x) + > _nograd(X;(6x)) * g:(0k)

=1

where )\z(gk) = A(Ok)z
ABx) = (J(g(0k)) - T(gB)T) ™ (=J(g(8k)) - J(F(6)) + g(6x))




One Final Detail: What About Minibatch Backprop?

e Two options:
1. Take average over entire update:

M
L(zB;0k) = E | f(zB;0k) + Znograd(/\i(:ng; 0r)) * gi(zB; Hk)]

rRB :
=1




One Final Detail: What About Minibatch Backprop?

e Two options:
2. First average the loss function and apply some reduction to the constraints

M
L(zp;0) = f(zp;0k) + Znograd (;\j($B§ 9k)) * gj(zB;0k)

=i

1 B

f(zp;6k) = E [f(zp;0k)] = Iz ) flwi; 0x)

rp :
=1

g(zp; k) = Reducey,exz(g9(zB;0k)) = e.g. ZZ(gj(iEz';9k))2




One Final Detail: What About Minibatch Backprop?

1. Fully Constrained Method

a. Pro: Seems more “correct”
b. Con: Will scale poorly, since many sets of multipliers must be computed

2. Reduction Method

a. Pro: Scales much better, since it doesn’t depend on batch size
b. Con: Requires some ad-hoc reduction / error function to be applied to the constraints

e Con for both methods: requires computing the Jacobians of the loss and

constraint functions over ALL parameters in the network
o  Only feasible for very small networks

ABx) = (J(g(0k)) - T(gB)T) ™ (=J(g(8k)) - J(F (k)" + g(6x))
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Time Complexity

Batch size: 100
Real-valued constraint

Seconds per iteration

Training time scaling with model size

Unconstrained

0251 __ soft-constrained
—— Reduction
0.20 4 — Constrained
Training time scaling with model size
0.15 - 0007 — sofvconmraned
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T|me CompleXIty Training time scaling with number of constraints

016 Training time scaling with number of constraints
104 e — Puegiinia
—— Reduction
H c 0124
e Batch size: 100
. ) c ] ;10.08-
e Model size: ~600 S 8757
- I g E 0.04 -
trainable parameters g
. 614
Q 0.00
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[7)) Number of constraints
©
c 4
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2 1 —— Reduction
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Number of constraints
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T|me CompleX|ty " Training time scaling with batch size

0,012 Training time scaling with batch size
— e
. 1 2 . C 0.010 4 —— Reduction
e Real-valued constraint
. c 1§

e Model size: ~600 R
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Experimental Design

e Training data:
o 1000 sine waves with
different parameters:

A: [0.2,5.0]

u = Asin(kz + ¢)

k: [0.4%m, 10 * 7]
¢: [—0.5,0.5]
o 50 random x-values per
curve

e Batch size: 1000
e Learning Rate: 1073

e Constraint: Helmholtz Equation: (V2 & k2) u=0




Neural Network Architecture
(A, k, )




Activation Function

. ReLU

3 Swish
R(z) =max(0, z)
8
2
6
1
4
0
2
=5 -4 -3 =2 =1 0 1 2 3
0
-10 =5 0 5 10

https://medium.com/@kanchansarkar/relu-not-a-differentiable-function-why-used-in-ara
dient-based-optimization-7fef3adcecec

e
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https://medium.com/@kanchansarkar/relu-not-a-differentiable-function-why-used-in-gradient-based-optimization-7fef3a4cecec
https://medium.com/@kanchansarkar/relu-not-a-differentiable-function-why-used-in-gradient-based-optimization-7fef3a4cecec
https://medium.com/@neuralnets/swish-activation-function-by-google-53e1ea86f820

Training Characteristics

Data Loss
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Model Predictions

Output

Model Predictions
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Nonlinear Projection




Nonlinear Projection

e I|dea: take a trained neural network and project its parameters to the
constraint manifold after training is complete:

0" = argmin ||0x — 0|
0cO
g(0)=0




Method Comparison

Nonlinear Projection

Normal training + - |
projection is much "
faster than constrained
optimization

Can yield different final
parameters

Can be applied to a
model which is already

trained! %

o

...........




Method Comparison

e |[f the constraint
manifold is “warped”,
normal training +
projection has shorter
distance than
constrained
optimization

9 (0)




Experimental Design

e Training data:
o 1000 sine waves with
different parameters:
A: [0.2,5.0]
k: [0.4%m, 10 * 7]

u = Asin(kz + ¢)

¢: [—0.5,0.5]
o 50 random x-values per
curve

Batch size: 1000
Learning Rate: 1073

Projection LR: 10 , ,
Constraint: Helmholtz Equation: (V + k ) u=0




Neural Network Architecture
(A, k, )




Nonlinear Projection Characteristics

Average loss

Inference Data Loss
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Projection Process

Output
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Model Predictions
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Conclusion

Constrained optimization is too slow to be used in practice

(except maybe for really small neural networks)

o Provides a good framework for designing and developing loss functions
o Does come with good theoretical guarantees

Nonlinear projection isn’t guaranteed to reach a minimum of the constrained
optimization problem

o Fast enough to be used
o Interesting as an interpretability method

Possible solution: combine the two
o Use constrained optimization only during projection




Conclusion and Future Work

e Another possible solution: Rephrase the problem to use Spectral Methods
o  Work in Fourier domain (i.e. frequency space)
o  Comes with guarantees that all L, functions (square integrable) can be represented
o PDEs are often easier to write down
m Easier for neural network to disentangle representations

e Current project at Berkeley Labs: Use NNs in combination with PDE Solvers
o Neural network works as a data-driven approximator
o PDE Solver corrects the solution to be exact
o Also equivalent to preconditioning PDE Solvers
m Makes PDE Solvers faster
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Questions?

https://github.com/gelijergensen/Constrained-Neural-Nets-\Workbook



https://github.com/gelijergensen/Constrained-Neural-Nets-Workbook

