-~

/\I % BERKELEY LAB
Bringing Science Solutions to the World

Neural Network Optimization
Under PDE Constraints

G. Eli Jergensen
12 Sep f2019




Outline

e Motivation
e Constrained Optimization

o Theory
o Experimental Design
o Results

e Nonlinear Projection
o Theory
o Experimental Design
o Results

e Conclusion and Future Work




Motivation

e Neural Networks are really powerful

data generators
o e.g. faces, cats, dogs

e Can be used to generate scientific

data wAY y SR ik

o e.g. weather forecasts, model fluids i VR )‘?’\ ' “
e Currently don’t know or respect . 4 =

physical laws ; :; -

o e.g. Conservation of energy, g =

conservation of momentum, etc.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. arXiv
preprint arXiv:1812.04948, 2018.




Neural Network Neural Network
as Data Generator as Dynamical System

Neural Networks .

e Can model arbitrary functions
Ty

e Parameterized by weights, &

e Trained by use of a loss
function, f

e Uses “truth” data and
backpropagation to update
weights

v ———— o —— —

J)

N ———

L ———

v !
Sy




Partial Differential Equations and Neural Networks

e Most physical laws/relationships can be written as a PDE

e Neural networks themselves model functions

e Therefore, we can apply a PDE to a neural network as long as we can take
derivatives

e Auto-differentiation does just that!
o ldea: define a derivative for all simple operations. Derivatives for complex operations can be

defined inductively using the chain rule
. OPyTorch

S atascience.co
magic 2686 d94 c95



https://towardsdatascience.com/pytorch-autograd-understanding-the-heart-of-pytorchs-magic-2686cd94ec95
https://towardsdatascience.com/pytorch-autograd-understanding-the-heart-of-pytorchs-magic-2686cd94ec95

Methods for Constraining Neural Networks

1. Domain Specific
a. e.g. If you want your model’'s outputs to have zero divergence, take the curl

2. Soft-Constraints / Regularization
a. Simply add some extra terms to your loss function to handle constraint
b. Pro: very computationally cheap (a couple extra additions)
c. Con: doesn’t guarantee the constraints are satisfied
3. Constrained Optimization
a. Modify neural network training to be a constrained optimization problem

4. Nonlinear projection

a. Take the parameters of the network and “project” them to the nearest point which satisfies a
constraint




Methods for Constraining Neural Networks

1. Domain Specific
a. e.g. If you want your model’'s outputs to have zero divergence, take the curl

2. Soft-Constraints / Regularization
a. Simply add some extra terms to your loss function to handle constraint
b. Pro: very computationally cheap (a couple extra additions)
c. Con: doesn’t guarantee the constraints are satisfied
3. Constrained Optimization
a. Modify neural network training to be a constrained optimization problem

4. Nonlinear projection

a. Take the parameters of the network and “project” them to the nearest point which satisfies a
constraint

el

BERKELEY LAB



Constrained Optimization




Neural Network Training as an Optimization Problem

Typical neural network training is a minimization problem:

6* = argmin E [f(xp;0)]
fc® TB
is the space of possible parameters, @
is the optimal parameters of the neural network
is a batch of inputs to the network
is the minimization (loss) function, which can be phrased as a function of
the input batch and the current network parameters

indicates that we take the expectation over the batches of inputs

el



NN Training as a Constrained Optimization Problem

e \We can upgrade the optimization problem to a constrained one by adding

6* = argmin E [f(zp;0)]
bc® TB
g(0)=0

e g is an equality constraint function which is satisfied when
g(60)=0

e The constraint function implicitly defines a manifold of valid parameters™:

Constraint manifold: § . (O)

* Under the assumption that g is twice differentiable and its Jacobian is full-rank everywhere ”\m



Optimization Problem

Geometrically, NN
training is a process
which moves us along
the dashed line
Orange color fill here
indicates how negative
the minimization
function is

...........

f o




Constraint Manifold g gace RN Constraint Space = R

e A second view of the
optimization problem, this
time from the viewpoint of
the constraints

e For clarity in illustration,
we assume the constraint
function is real-valued

e Lightness roughly
corresponds to optimality
of minimization function




Constrained Training

e Normal training moves
along red curve

e Constrained training
moves along purple
curve

............




Tanabe’s Method

e Define the dynamical system:

0= T = W) =~ (1 J(g(0)*T(a(9)) J(F(0))" ~ J(g(0))g(0)

e J(f(8)) s the Jacobian of the function f at the point @
° AF is the Moore-Penrose Pseudoinverse of the matrix A

e If g is twice differentiable and g's first derivatives are linearly independent at
@ (i.e. full-rank Jacobian), then 9(9) will decay exponentially quickly




Proof of Tanabe’s Method
g(t) =g(6p)e™"

(J(Q(Q))+J(g(9))) = —J(g(@))+g(9(t)) I Assumption

I The Jacobian (and therefore the pseudoinverse) needs to be full rank e



Proof of Tanabe’s Method

e True for any vector (under our assumptions):
v=(J(g(0))"J(g(0))) v+ (I - J(g(0))"I(g(F))) v

e In particular,




Proof of Tanabe’s Method

0=—J(g(0)Tg0t) + (I —J(g(8)"JI(g(6)))h(0)




Geometry of Tanabe’s Method
©-Space

Is the normal
backpropagation vector
Purple is the projection
down to the tangent plane
of the constraint surface
Green is a correction term
Red is the Tanabe’s result




Implementing Tanabe’s Method in Practice

e Tanabe’s Method can also be written as

) = 00 — w(o() = ~I(FOW))T ~ J(g(0(0))"AG(D).

where A(8(1)) = (J(g(8(t))T(g(01)))T) ™ (~I(g(8(1)))J(F(B(t))T + g(6()))

e Equivalently, using a slightly different notation with \;(8(¢)) for the

components of A(6(t))
M

V(O(1) =~V f(6(t)) — Y Xi(6(t)) * Vgi(6(t))

i=1




Discretizing Tanabe’s Method

e \While Tanabe’s Method is continuous, we need a discrete version. Applying a

simple forward Euler method to
M

T(9(t) = —VF(O(1) — D _ X(B(t)) * Vai(6(t))

=1

gives

M
Or =0k—1+nxV(Op_1) =01 —n* (Vf(Qk—ﬂ - Z /\i(9k—1)ng'(9k—1))

=1




Tanabe’s Method and Backpropagation

e Normal backpropagation on the loss function £ gives
Oy = Op_1—8)% VL Oa)

e Comparing this to our forward Euler discretization

M
O =0k—1+nxV(Op_1) =0k—1 —m* (Vf(Ok—ﬂ - Z /\i(9k—1)vgi(9k—1)>

=1

tells us we need

M
L(Or) = f(Or) + Znograd(Az-(Hk)) * i (O)




Implementing Tanabe’s Method in Practice

e Result: We can simply define a new loss function to do constrained
optimization!

L(0r) = f(6x) + > _nograd(X;(6x)) * g:(0k)

=1

where )\z(gk) = A(Ok)z
ABx) = (J(g(0k)) - T(gB)T) ™ (=J(g(8k)) - J(F(6)) + g(6x))




One Final Detail: What About Minibatch Backprop?

e Two options:
1. Take average over entire update:

M
L(zB;0k) = E | f(zB;0k) + Znograd(/\i(:ng; 0r)) * gi(zB; Hk)]

rRB :
=1




One Final Detail: What About Minibatch Backprop?

e Two options:
2. First average the loss function and apply some reduction to the constraints

M
L(zp;0) = f(zp;0k) + Znograd (;\j($B§ 9k)) * gj(zB;0k)

=i

1 B

f(zp;6k) = E [f(zp;0k)] = Iz ) flwi; 0x)

rp :
=1

g(zp; k) = Reducey,exz(g9(zB;0k)) = e.g. ZZ(gj(iEz';9k))2




One Final Detail: What About Minibatch Backprop?

1. Fully Constrained Method

a. Pro: Seems more “correct”
b. Con: Will scale poorly, since many sets of multipliers must be computed

2. Reduction Method

a. Pro: Scales much better, since it doesn’t depend on batch size
b. Con: Requires some ad-hoc reduction / error function to be applied to the constraints

e Con for both methods: requires computing the Jacobians of the loss and

constraint functions over ALL parameters in the network
o  Only feasible for very small networks

ABx) = (J(g(0k)) - T(gB)T) ™ (=J(g(8k)) - J(F (k)" + g(6x))

el



Time Complexity

Batch size: 100
Real-valued constraint

Seconds per iteration

Training time scaling with model size

Unconstrained

0251 __ soft-constrained
—— Reduction
0.20 4 — Constrained
Training time scaling with model size
0.15 - 0007 — sofvconmraned
—— Reduction
.% 0.006 -
0.10 A §°-°°5- }
005 _ 0.003 -
0 1000 2000 3000 4000 5000 6000
Number of trainable paramters
0.00 A
T T T T T T T
0 1000 2000 3000 4000 5000 6000

Number of trainable paramters

~

fFreEecres "1

BERKELEY LAB




T|me CompleXIty Training time scaling with number of constraints

016 Training time scaling with number of constraints
104 e — Puegiinia
—— Reduction
H c 0124
e Batch size: 100
. ) c ] ;10.08-
e Model size: ~600 S 8757
- I g E 0.04 -
trainable parameters g
. 614
Q 0.00
o 0 20 40 60 80 100/
[7)) Number of constraints
©
c 4
9 —— Unconstrained
n —— Soft-constrained
2 1 —— Reduction
—— Constrained
O =

0 20 40 60 80 100
Number of constraints

el

BERKELEY LAB



T|me CompleX|ty " Training time scaling with batch size

0,012 Training time scaling with batch size
— e
. 1 2 . C 0.010 4 —— Reduction
e Real-valued constraint
. c 1§

e Model size: ~600 R

o §0.004
trainable parameters 808"
g)_ 0.0024{ =7 | ' | | '
" 0_6 | 0 100 ZOOBatCh SiZe300 400 500
©
=
S | —— Unconstrained
o 0.4
n —— Soft-constrained
0.2 - —— Reduction
—— Constrained
0.0 A
0 100 200 300 400 500
Batch size




Experimental Design

e Training data:
o 1000 sine waves with
different parameters:

A: [0.2,5.0]

u = Asin(kz + ¢)

k: [0.4%m, 10 * 7]
¢: [—0.5,0.5]
o 50 random x-values per
curve

e Batch size: 1000
e Learning Rate: 1073

e Constraint: Helmholtz Equation: (V2 & k2) u=0




Neural Network Architecture
(A, k, )




Activation Function

. ReLU

3 Swish
R(z) =max(0, z)
8
2
6
1
4
0
2
=5 -4 -3 =2 =1 0 1 2 3
0
-10 =5 0 5 10

https://medium.com/@kanchansarkar/relu-not-a-differentiable-function-why-used-in-ara
dient-based-optimization-7fef3adcecec

e

BERKELEY LAB



https://medium.com/@kanchansarkar/relu-not-a-differentiable-function-why-used-in-gradient-based-optimization-7fef3a4cecec
https://medium.com/@kanchansarkar/relu-not-a-differentiable-function-why-used-in-gradient-based-optimization-7fef3a4cecec
https://medium.com/@neuralnets/swish-activation-function-by-google-53e1ea86f820

Training Characteristics

Data Loss
10° 4
0
o
()
(o)}
g
(]
>
<< 107 4
—— Unconstrained
—— Soft-constrained
—— Reduction
10—2 T T T T T T T T T
0 5 10 15 20 25 30 35 40

Epoch

Magnitude of constraint value

Distribution of Magnitude of Constraint Residual

103 4
102 =
101 - —— Unconstrained
—— Soft-constrained
o —— Reduction
10° 4
10—1 .
10—2 4
0 5 10 15 20 25 30 35 40
Epoch

e

BERKELEY LAB




Model Predictions

Output

Model Predictions

1.00 A

0.75 A

0.50 A

0.25 4

0.00 -

—0.25 A

—0.50 A1

—0.75 A

—1.00 A

—— Unconstrained
—— Soft-constrained
—— /Reduction

[

N

\

N+

-1.00 -0.75 -0.50 -0.25

0.00
Input

0.25

0.50

0.75 1.00

el

BERKELEY LAB



Nonlinear Projection




Nonlinear Projection

e I|dea: take a trained neural network and project its parameters to the
constraint manifold after training is complete:

0" = argmin ||0x — 0|
0cO
g(0)=0




Method Comparison

Nonlinear Projection

Normal training + - |
projection is much "
faster than constrained
optimization

Can yield different final
parameters

Can be applied to a
model which is already

trained! %

o

...........




Method Comparison

e |[f the constraint
manifold is “warped”,
normal training +
projection has shorter
distance than
constrained
optimization

9 (0)




Experimental Design

e Training data:
o 1000 sine waves with
different parameters:
A: [0.2,5.0]
k: [0.4%m, 10 * 7]

u = Asin(kz + ¢)

¢: [—0.5,0.5]
o 50 random x-values per
curve

Batch size: 1000
Learning Rate: 1073

Projection LR: 10 , ,
Constraint: Helmholtz Equation: (V + k ) u=0




Neural Network Architecture
(A, k, )




Nonlinear Projection Characteristics

Average loss

Inference Data Loss

=== Unprojected
— Projected

1071 4 3
\
\
\
\
N
\
~
~
\\
~
-2 | A Y
10 \\\
\\
N
N
\\
\.._\\
-‘\\’—'\\
1073 4 ‘-—"'\\,//
T T T T T T T T
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

Average constraint error

Inference Constraint Error

101 - R -
100 4
=== Unprojected
10-1 4 —— Projected
1072 -
10—3 .
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

FrEeEerer ﬁ



Projection Process

Output

1.00 -

0.75 A

0.50 A

0.25 A

0.00 -

—0.25 A

—0.50 -

—0.75 A

—1.00 A

Model Predictions

—== Unprojected
—— Projected

-1.00 -0.75 -0.50 -0.25 0.00 0.25
Input

0.50 0.75 1.00




Model Predictions

Output

Model Predictions

1.0 A
0.5 A
0.0 A
—0.5 A
=== Unprojected \-%
—1.0 41 —— Projected

—-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Input

20.0

17.5

- 15.0

-12.5

- 10.0

7.5

5.0

2.5

Epoch




Conclusion

Constrained optimization is too slow to be used in practice

(except maybe for really small neural networks)

o Provides a good framework for designing and developing loss functions
o Does come with good theoretical guarantees

Nonlinear projection isn’t guaranteed to reach a minimum of the constrained
optimization problem

o Fast enough to be used
o Interesting as an interpretability method

Possible solution: combine the two
o Use constrained optimization only during projection




Conclusion and Future Work

e Another possible solution: Rephrase the problem to use Spectral Methods
o  Work in Fourier domain (i.e. frequency space)
o  Comes with guarantees that all L, functions (square integrable) can be represented
o PDEs are often easier to write down
m Easier for neural network to disentangle representations

e Current project at Berkeley Labs: Use NNs in combination with PDE Solvers
o Neural network works as a data-driven approximator
o PDE Solver corrects the solution to be exact
o Also equivalent to preconditioning PDE Solvers
m Makes PDE Solvers faster




=~

: A
reeeer?]f| BERKELEY LAB
ACknOWIGdgementS Bringing Science Solutions to the World

e Mr. Prabhat
e Karthik Kashinath
e Chiyu “Max” Jiang

e NERSC:

This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of |
Energy Office of Science User Facility operated under Contract §
No. DE-AC02-05CH11231.

PN | | £ 7 # gt r— <.
_ — e —— e T




References

Bar-Sinai, Y., Hoyer, S., Hickey, J., and Brenner, M. P. (2018). Data-driven discretization:
a method for systematic coarse graining of partial differential equations. arXiv preprint
arXiv:1808.04930.

Branin, F. H. (1972). Widely convergent method for finding multiple solutions of simultaneous
nonlinear equations. IBM Journal of Research and Development, 16(5):504-522.

Broyden, C. (1969). A new method of solving nonlinear simultaneous equations. The Computer
Journal, 12(1):94-99.

Broyden, C. G. (1965). A class of methods for solving nonlinear simultaneous equations.
Mathematics of computation, 19(92):577-593.

Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (2006). Spectral methods. Springer.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary
differential equations. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., and Garnett, R., editors, Advances in Neural Information Processing Systems 31, pages
6571-6583. Curran Associates, Inc.

Ha, D., Dai, A., and Le, Q. V. (2016). Hypernetworks. arXiv preprint arXiv:1609.09106.

Karras, T., Laine, S., and Aila, T. (2018). A style-based generator architecture for generative
adversarial networks. arXiv preprint arXiv:1812.04948.

Long, Z., Lu, Y., and Dong, B. (2018). Pde-net 2.0: Learning pdes from data with a numeric-
symbolic hybrid deep network. arXiv preprint arXiv:1812.04426.

el

BERKELEY LAB



References

Long, Z., Lu, Y., Ma, X., and Dong, B. (2017). Pde-net: Learning pdes from data. arXiv preprint
arXiw:1710.09668.

Marquez-Neila, P., Salzmann, M., and Fua, P. (2017). Imposing hard constraints on deep
networks: Promises and limitations. arXiv preprint arXiv:1706.02025.

Platt, J. C. and Barr, A. H. (1988). Constrained differential optimization. In Neural Information
Processing Systems, pages 612-621.

Raissi, M. (2018). Deep hidden physics models: Deep learning of nonlinear partial differential
equations. The Journal of Machine Learning Research, 19(1):932-955.

Ramachandran, P., Zoph, B., and Le, Q. V. (2017). Swish: a self-gated activation function.

arXw preprint arXiv:1710.05941, 7.

Straeter, T. A. (1971). On the extension of the davidon-broyden class of rank one, quasi-newton
minimization methods to an infinite dimensional hilbert space with applications to optimal
control problems.

Tanabe, K. (1980). A geometric method in nonlinear programming. Journal of Optimization
Theory and Applications, 30(2):181-210.

el

BERKELEY LAB



Questions?

https://github.com/gelijergensen/Constrained-Neural-Nets-\Workbook



https://github.com/gelijergensen/Constrained-Neural-Nets-Workbook

