
Neural Network Optimization
Under PDE Constraints

G. Eli Jergensen
12 Sep. 2019

Outline
● Motivation
● Constrained Optimization

○ Theory
○ Experimental Design
○ Results

● Nonlinear Projection
○ Theory
○ Experimental Design
○ Results

● Conclusion and Future Work

Motivation
● Neural Networks are really powerful

data generators
○ e.g. faces, cats, dogs

● Can be used to generate scientific
data

○ e.g. weather forecasts, model fluids

● Currently don’t know or respect
physical laws

○ e.g. Conservation of energy,
conservation of momentum, etc.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. arXiv
preprint arXiv:1812.04948, 2018.

Neural Networks
● Can model arbitrary functions

● Parameterized by weights,
● Trained by use of a loss

function,
● Uses “truth” data and

backpropagation to update
weights

Partial Differential Equations and Neural Networks
● Most physical laws/relationships can be written as a PDE
● Neural networks themselves model functions
● Therefore, we can apply a PDE to a neural network as long as we can take

derivatives
● Auto-differentiation does just that!

○ Idea: define a derivative for all simple operations. Derivatives for complex operations can be
defined inductively using the chain rule

https://towardsdatascience.com/pytorch-autograd-understanding-the-heart-of-pytorchs-
magic-2686cd94ec95

https://towardsdatascience.com/pytorch-autograd-understanding-the-heart-of-pytorchs-magic-2686cd94ec95
https://towardsdatascience.com/pytorch-autograd-understanding-the-heart-of-pytorchs-magic-2686cd94ec95

Methods for Constraining Neural Networks
1. Domain Specific

a. e.g. If you want your model’s outputs to have zero divergence, take the curl

2. Soft-Constraints / Regularization
a. Simply add some extra terms to your loss function to handle constraint
b. Pro: very computationally cheap (a couple extra additions)
c. Con: doesn’t guarantee the constraints are satisfied

3. Constrained Optimization
a. Modify neural network training to be a constrained optimization problem

4. Nonlinear projection
a. Take the parameters of the network and “project” them to the nearest point which satisfies a

constraint

Methods for Constraining Neural Networks
1. Domain Specific

a. e.g. If you want your model’s outputs to have zero divergence, take the curl

2. Soft-Constraints / Regularization
a. Simply add some extra terms to your loss function to handle constraint
b. Pro: very computationally cheap (a couple extra additions)
c. Con: doesn’t guarantee the constraints are satisfied

3. Constrained Optimization
a. Modify neural network training to be a constrained optimization problem

4. Nonlinear projection
a. Take the parameters of the network and “project” them to the nearest point which satisfies a

constraint

Constrained Optimization

Neural Network Training as an Optimization Problem
● Typical neural network training is a minimization problem:

● is the space of possible parameters,
● is the optimal parameters of the neural network
● is a batch of inputs to the network
● is the minimization (loss) function, which can be phrased as a function of

 the input batch and the current network parameters
● indicates that we take the expectation over the batches of inputs

NN Training as a Constrained Optimization Problem
● We can upgrade the optimization problem to a constrained one by adding

● is an equality constraint function which is satisfied when

● The constraint function implicitly defines a manifold of valid parameters*:

 Constraint manifold:

* Under the assumption that is twice differentiable and its Jacobian is full-rank everywhere

Optimization Problem
● Geometrically, NN

training is a process
which moves us along
the dashed line

● Orange color fill here
indicates how negative
the minimization
function is

Constraint Manifold
● A second view of the

optimization problem, this
time from the viewpoint of
the constraints

● For clarity in illustration,
we assume the constraint
function is real-valued

● Lightness roughly
corresponds to optimality
of minimization function

Constrained Training
● Normal training moves

along red curve
● Constrained training

moves along purple
curve

Tanabe’s Method
● Define the dynamical system:

● is the Jacobian of the function at the point

● is the Moore-Penrose Pseudoinverse of the matrix

● If is twice differentiable and ‘s first derivatives are linearly independent at
 (i.e. full-rank Jacobian), then will decay exponentially quickly

Proof of Tanabe’s Method

! Assumption

! The Jacobian (and therefore the pseudoinverse) needs to be full rank

Proof of Tanabe’s Method
● True for any vector (under our assumptions):

● In particular,

Proof of Tanabe’s Method

Geometry of Tanabe’s Method
● Yellow is the normal

backpropagation vector
● Purple is the projection

down to the tangent plane
of the constraint surface

● Green is a correction term
● Red is the Tanabe’s result

Implementing Tanabe’s Method in Practice
● Tanabe’s Method can also be written as

● Equivalently, using a slightly different notation with for the
components of

Discretizing Tanabe’s Method
● While Tanabe’s Method is continuous, we need a discrete version. Applying a

simple forward Euler method to

gives

Tanabe’s Method and Backpropagation
● Normal backpropagation on the loss function gives

● Comparing this to our forward Euler discretization

tells us we need

Implementing Tanabe’s Method in Practice
● Result: We can simply define a new loss function to do constrained

optimization!

One Final Detail: What About Minibatch Backprop?
● Two options:
1. Take average over entire update:

One Final Detail: What About Minibatch Backprop?
● Two options:
2. First average the loss function and apply some reduction to the constraints

One Final Detail: What About Minibatch Backprop?
1. Fully Constrained Method

a. Pro: Seems more “correct”
b. Con: Will scale poorly, since many sets of multipliers must be computed

2. Reduction Method
a. Pro: Scales much better, since it doesn’t depend on batch size
b. Con: Requires some ad-hoc reduction / error function to be applied to the constraints

● Con for both methods: requires computing the Jacobians of the loss and
constraint functions over ALL parameters in the network

○ Only feasible for very small networks

Time Complexity
● Batch size: 100
● Real-valued constraint

Time Complexity
● Batch size: 100
● Model size: ~600

trainable parameters

Time Complexity
● Real-valued constraint
● Model size: ~600

trainable parameters

Experimental Design
● Training data:

○ 1000 sine waves with
different parameters:
:
:
:

○ 50 random x-values per
curve

● Batch size: 1000
● Learning Rate: 10-3

● Constraint: Helmholtz Equation:

Neural Network Architecture

Activation Function

https://medium.com/@kanchansarkar/relu-not-a-differentiable-function-why-used-in-gra
dient-based-optimization-7fef3a4cecec

https://medium.com/@neuralnets/swish-activation-function-by-google-53e1ea86f820

https://medium.com/@kanchansarkar/relu-not-a-differentiable-function-why-used-in-gradient-based-optimization-7fef3a4cecec
https://medium.com/@kanchansarkar/relu-not-a-differentiable-function-why-used-in-gradient-based-optimization-7fef3a4cecec
https://medium.com/@neuralnets/swish-activation-function-by-google-53e1ea86f820

Training Characteristics

Model Predictions

Nonlinear Projection

Nonlinear Projection
● Idea: take a trained neural network and project its parameters to the

constraint manifold after training is complete:

Method Comparison
● Normal training +

projection is much
faster than constrained
optimization

● Can yield different final
parameters

● Can be applied to a
model which is already
trained!

Method Comparison
● If the constraint

manifold is “warped”,
normal training +
projection has shorter
distance than
constrained
optimization

Experimental Design
● Training data:

○ 1000 sine waves with
different parameters:
:
:
:

○ 50 random x-values per
curve

● Batch size: 1000
● Learning Rate: 10-3

● Projection LR: 10-4

● Constraint: Helmholtz Equation:

Neural Network Architecture

Nonlinear Projection Characteristics

Projection Process

Model Predictions

Conclusion
● Constrained optimization is too slow to be used in practice

(except maybe for really small neural networks)
○ Provides a good framework for designing and developing loss functions
○ Does come with good theoretical guarantees

● Nonlinear projection isn’t guaranteed to reach a minimum of the constrained
optimization problem

○ Fast enough to be used
○ Interesting as an interpretability method

● Possible solution: combine the two
○ Use constrained optimization only during projection

Conclusion and Future Work
● Another possible solution: Rephrase the problem to use Spectral Methods

○ Work in Fourier domain (i.e. frequency space)
○ Comes with guarantees that all L2 functions (square integrable) can be represented
○ PDEs are often easier to write down

■ Easier for neural network to disentangle representations

● Current project at Berkeley Labs: Use NNs in combination with PDE Solvers
○ Neural network works as a data-driven approximator
○ PDE Solver corrects the solution to be exact
○ Also equivalent to preconditioning PDE Solvers

■ Makes PDE Solvers faster

Acknowledgements
● Mr. Prabhat
● Karthik Kashinath
● Chiyu “Max” Jiang

● NERSC:
This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of
Energy Office of Science User Facility operated under Contract
No. DE-AC02-05CH11231.

References

References

Questions?

https://github.com/gelijergensen/Constrained-Neural-Nets-Workbook

https://github.com/gelijergensen/Constrained-Neural-Nets-Workbook

